Also, ich betrachte damit den Input Buffer als verstanden. Wer dazu noch Fragen hat, der kann ruhig fragen, er kommt schließlich in der nächsten Schaltung in abgewandelter Form auch wieder vor
. Hier nochmal das Schaltbild von der Eingangsstufe:
So, und damit gehts jetzt weiter:
Links kommt das Signal aus dem zuvor besprochenen Input Buffer dran und an dem rechten Knödel gehts dann weiter zum nächsten Schaltungsteil (Kanalumschaltung usw...). Die Frage ist jetzt folgende: Warum braucht man hier eine Röhre? Nun, es ist so: Dieses Klangstellnetzwerk ist ein passives, d.h. es kommt hinten immer weniger Spannung raus, als man vorne reinschickt. Das sieht man hier recht gut (ATS ist dabei AfterToneStack, also praktisch vor der Röhre):
Fazit: Die Röhre wird benötigt, damit der Cleankanal lautstärkemäßig zum Leadkanal passt. Sie dient also als
Aufholverstärker, sie
holt den Pegelverlust wieder auf. Okay, das sollte also klar sein. Wer genauer hinsieht, der wird feststellen, dass an dieser Schaltung drei wesentliche Punkte anders sind als an der Eingangsstufe, die wir zuvor besprochen haben:
1. Der Anodenwiderstand ist kleiner (100k anstatt 220k): Der Anodenwiderstand bestimmt wie wir wissen die Verstärkung der Röhrenstufe maßgeblich mit. Da wir hier ja schon genügend Spannung haben - der Eingangsstufe sei Dank - benötigen wir nicht mehr soviel Spannungsverstärkung. Desweiteren ist es besser, hier 100k anstatt 220k zu verbauen, weil die gesamte Verstärkerstufe damit am Ausgang
niederohmiger wird. Das wird klar, wenn man sich mal den Weg der +250V oder so an den Ausgang überlegt: Diese +250V müssen ja durch den Anodenwiderstand fließen, das heißt, desto größer der ist, desto mehr Probleme mit Rauschen usw fängt man sich ein.
2. Der Kathodenkondensator ist größer (25µ anstatt 1µ, außerdem ein Elko): Das kann man machen, wie man will...Wenn einem die Höhen noch nicht spritzig genug sind, dann kann man da 1µ einbauen, jeder wie er will...man kann ihn auch ganz weglassen, das muss das an die Entwicklung anschließende Basteln zeigen.
3. Der Gridstopper mit 10kOhm fehlt (weggelassen): Man kann ihn hier einbauen, ich habe ihn im Schaltbild schlicht vergessen. Macht aber nichts, es sollte auch ohne nichts schwingen, ins Gesamtschaltbild werde ich ihn mit reinmachen.
Zur Funktionsweise der Schaltung:
Das Signal gelangt vom Eingang an das Klangstellnetzwerk (das ist, wie man sehen kann, von der Firma mit der komischen 7...). Dieses Gebilde ist relativ schwer zu berechnen, da ich noch nicht E-Technik studiere kann ich das genauso wenig wie ihr das wahrscheinlich könnt, aber es gibt ja noch den
ToneStack Calculator von
Duncan's Amp Pages ! Schaut da mal unter "Software Downloads", der hat echt nette Sachen online. Mit dem TSC könnt ihr mal schauen, was passiert, wenn ihr die Werte der Bauteile verändert bzw die Regler rumschiebt...da seht ihr auch, dass es bei einem Gitarrenamp praktisch keinen geradlinigen Frequenzgang gibt. Na egal, weiter im Text:
Das Signal wird durch das Klangstellnetzwerk abgeschwächt und gelangt auf das Volume-Poti, mit dem man....wer hätte das gedacht...die Lautstärke des Clean-Kanals einstellen kann. Versuche werden zeigen, ob das Poti besser vor oder hinter der Röhre funktioniert. Ich denke, hinter der Röhre geht es besser, also mit weniger Rauschen, aber das probiere ich dann aus und dementsprechend ändere ich dann vor der Bauphase die Schaltbilder nochmals ab.
Nach der Röhre wird das Signal durch den Kondensator wieder von der Gleichspannung befreit, die durch den Ruhearbeitspunkt an der Anode anliegt und liegt dann wieder als reines, klangverbogenes, Wechselspannungssignal vor, das dann weiter bearbeitet werden kann.
Der Nachteil dieser Schaltung ist, dass sie praktisch nur Clean macht, also wirklich nur Clean, sowas wie Crunch kann diese Schaltung nicht. Je nachdem wie das mit der Anzahl der Röhrensysteme aussieht, kann man nachher da noch einen schaltbaren "Crunch Booster" einbauen, mal schauen. Das betrachten wir dann im Gesamtschaltbild.
MfG OneStone