chris_kah
HCA PA- und E-Technik
DMX für Einsteiger
Meinen Einstieg in DMX möchte ich zum Anlass nehmen, um einen kleinen Workshop für Einsteiger zu verfassen, die damit eventuell das ganze Prozedere abkürzen können.
Ich fange mit dem Hardware-Layer an (und Kabeln + Terminierungen)
DMX512 basiert auf dem RS485 Protokoll und verwendet die gleichen Treiber- und Empfängerbausteine. Bei DMX ist die Baudrate besonders und genormt (250 kBaud) sowie eine besondere Abfolge der Bytes. Außerdem ist der 5- polige XLR Stecker genormt. Bei günstigeren Geräten hat sich jedoch der preisgünstigere 3-polige XLR Stecker de Facto durchgesetzt, der eigentlich nicht normgerecht ist, aber kostengünstiger.
Steckerbelegung:
1 – Masse, 2 Daten (-), 3 Daten (+) (4 und 5 beim 5-poligen oft nicht belegt)
Ausgänge sind Buchsen (weiblich) Eingänge sind stecker (männlich), also gerade umgekehrt, wie bei Audio-Signalen.
Dass die Belegung Pin 2 negativ und Pin 3 Positiv ist, macht für die Übertragung nichts aus. Pin 1 ist Masse = Schirm und die Pins 2 und 3 sind 1:1 durchverbunden, ob Audio oder DMX - egal.
RS485 erlaubt eine bidirektionale Datenübertragung, was im einfachen DMX Fall in der Regel nicht ausgenutzt wird. Bei RDM wird auch die Gegenrichtung genutzt.
Zu RDM kann ich weiter nichts sagen, wohl aber zu RS485, das ich beruflich einsetze.
Die Leitungen:
Der RS485 Bus ist impedanzkontrolliert (Wellenwiderstand 120 Ohm differentiell) und muss an beiden Enden abgeschlossen werden. Ein Verzweigung ist nicht vorgesehen und würde aufgrund der Welleneigenschaften Reflexionen verursachen. In der Regel ist bei käuflichen DMX Sendern (Lichtpult, Interface) der Sender abgeschlossen und befindet sich an einem Ende. Das andere Ende muss terminiert werden.
Anmerkung:
RS485 erlaubt auch, mitten am BUS zu senden. Dann müssen beide Enden terminiert (abgeschlossen) werden, allerdings darf sich in diesem Fall am Sender in der Mitte kein weiterer Abschlusswiderstand befinden.
Ich habe dies bei Eigenbauten schon ausgenutzt und 2 Ausgänge eingebaut ohne internen Abschlusswiderstand. So kann ich vom Sender nach 2 Seiten wegfahren, was in meinem Fall Kabel spart. Es müssen aber auf jeden Fall an beiden Enden Abschlusswiderstände vorgesehen werden. Wird nur 1 Kabel weggefahren, steckt der 2. Abschlusswiderstand einfach am 2. Ausgang.
Ich habe dies bei Eigenbauten schon ausgenutzt und 2 Ausgänge eingebaut ohne internen Abschlusswiderstand. So kann ich vom Sender nach 2 Seiten wegfahren, was in meinem Fall Kabel spart. Es müssen aber auf jeden Fall an beiden Enden Abschlusswiderstände vorgesehen werden. Wird nur 1 Kabel weggefahren, steckt der 2. Abschlusswiderstand einfach am 2. Ausgang.
Wellenwiderstand:
Ein kurzer Ausflug zum Wellenwiderstand. Der Wellenwiderstand ist eine elektrische Eigenschaft einer Leitung. Sie bestimmt das Verhältnis von elektrischem Feld und Magnetfeld, wenn sich eine Welle entlang einer Leitung ausbreitet.
Der Wellenwiderstand ist NICHT der ohmsche Serienwiderstand des Kabels und lässt sich nicht mit einem Multimeter im Ohm-Bereich ermitteln.
Für hohe Frequenzen ist der Kapazitätsbelag (pF/m) und der Induktivitätsbelag (nH/m) dominant. Bei tiefen Frequenzen (Audio-Bereich) dominiert der Widerstandsbelag und der Kapazitätsbelag.
Der Bereich, ab dem der Wellenwiderstand interessant wird,beginnt in etwa bei 10 MHz.
Bei Digitalsignalen -wie bei DMX der Fall- ist die Flankenanstiegszeit interessant. Die Frequenz, die in den Flanken steckt, ist bei steilen Flanken deutlich höher als der Kehrwert der Periodendauer.
Ein grober Anhaltswert für die Frequenz, die in einer Flanke steckt ist: 3x die Anstiegszeit 20% - 80%. Das wäre die Periodendauer der höchsten Frequenz. Also fmax ~= 1 / (3* t-rise)
Der Wellenwiderstand ist NICHT der ohmsche Serienwiderstand des Kabels und lässt sich nicht mit einem Multimeter im Ohm-Bereich ermitteln.
Für hohe Frequenzen ist der Kapazitätsbelag (pF/m) und der Induktivitätsbelag (nH/m) dominant. Bei tiefen Frequenzen (Audio-Bereich) dominiert der Widerstandsbelag und der Kapazitätsbelag.
Der Bereich, ab dem der Wellenwiderstand interessant wird,beginnt in etwa bei 10 MHz.
Bei Digitalsignalen -wie bei DMX der Fall- ist die Flankenanstiegszeit interessant. Die Frequenz, die in den Flanken steckt, ist bei steilen Flanken deutlich höher als der Kehrwert der Periodendauer.
Ein grober Anhaltswert für die Frequenz, die in einer Flanke steckt ist: 3x die Anstiegszeit 20% - 80%. Das wäre die Periodendauer der höchsten Frequenz. Also fmax ~= 1 / (3* t-rise)
Die 250 kBaud von DMX lassen eher nicht auf die Notwendigkeit der Wellenbetrachtung schließen, wohl aber die recht schnellen Anstiegszeiten der Digitalsignale.
Typische Anstiegszeiten der Treiberbausteine:
15ns → da stecken 22MHz drin, 10ns Transition → da sind es sogar 33MHz
Noch ein Beispiel:
Bei einer 15ns Transition verteilt sich der 0-1 Übergang auf etwa 3m Leitungslänge. Die Ausbreitungsgeschwindigkeit ist ungefähr 5ns/m bei einem Dielektrikum mit einem Epsilon R von etwa 4, was ein üblicher Wert für die verwendeten Isolationsmaterialien ist.
Bei 250 kBit ist 1 Bit auf der Leitung etwa 800m lang.
Wenn es zu Störungen durch Reflexionen kommt, dann passiert es bei den normalen Leitungslängen im Nachbarbit, auf jeden Fall im gleichen Byte. Störungen durch andere Kanäle (= später übertragene Bytes) sind eher unwahrscheinlich.
Für DMX werden spezielle Kabel mit definiertem Wellenwiderstand angeboten. Es gibt auch die Aussage, man dürfe keinesfalls Mikrofonkabel als DMX Kabel missbrauchen. Gerade bei der (eigentlich nicht normgerechten) Verwendung von 3-poligen XLR Steckern bei günstigen Geräten, ist die Versuchung groß.
Nun ist es so, dass der Wellenwiderstand vom Dielektrikum abhängt und von der Kabelgeometrie. Die Geometrie eines normal gefertigten Kabels ist jedoch in einem Bereich, dass sich ohnehin ein Wellenwiderstand von 80 – 150 Ohm ergibt, eher aber 100 – 130 Ohm.
Theoretisch sollte der Abschlusswiderstand genau dem Wellenwiderstand entsprechen. In der Praxis reicht es aber, wenn er in etwa gleich groß ist. Wir sind hier nicht im Gigahertz-Bereich und haben es auch nicht mit Anstiegszeiten von einigen 10 ps zu tun. Sonst gäbe es Probleme bei jeder Steckverbindung und auch bei den meisten DMX Teilnehmern, die intern auch nicht zu 100% den Wellenwiderstand einhalten oder sogar kurze Stichleitungen enthalten.
Ob die 120 Ohm Leitung mit 120 Ohm oder 110 Ohm abgeschlossen ist, macht wenig Unterschied.
Wichtig ist aber, dass überhaupt ein Abschlusswiderstand vorhanden ist. Die beste Verkabelung mit speziellem DMX Kabel nutzt nichts, wenn kein Abschluss vorhanden ist, eine Verkabelung mit Mikrofonkabel und geeigneter Terminierung wird aber in der Regel problemlos funktionieren, wenn die Leitungen insgesamt nicht zu lang sind.
Was aber richtig stört, ist eine passive Y-Verzweigung des Kabels. Da sieht die Welle eine deutliche Fehlanpassung. Daher ist die passive Verzweigung zu vermeiden und statt dessen ein aktiver DMX Splitter einzusetzen.
Kurzfassung:
Das DMX Protokoll basiert auf dem RS485 Bus. Durch die steilen Flanken der Digitalsignale ist eine Betrachtung mit der Leitungstheorie nötig. Eine Terminierung an beiden Leitungsenden ist wesentlich wichtiger als die Verwendung von speziellen DMX Kabeln (wobei der Einsatz von richtigen DMX Kabeln bei größeren Verkabelungen durchaus der Betriebssicherheit zuträglich ist). Eine passive Y-förmige Verzweigung mit T-Stücken ist nicht zulässig.
Ausblick: mit etwas Abstand folgt der 2. Teil: Das DMX Protokoll.
Bitte keine Fragen zwischendrin posten, die Themen werden in einzelnen Posts getrennt. Wenn die zu dicht nacheinander kommen, fasst die Boardsoftware die Beiträge zusammen. Stay tuned.
- Eigenschaft
Zuletzt bearbeitet von einem Moderator: